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Abstract 

In this paper, Maximal overlap discrete Wavelet Transform (MODWT) has been implemented along with the 

traditional discrete wavelet transform (DWT) for the detection and localization of different types of power quality (PQ) 

disturbance signals. Each of the signal has been decomposed up to fourth level with both the MODWT and DWT. The co-

efficients of both MODWT and DWT decomposition have been further used for classification. The selected features have 

been extracted from the  detail coefficient of the  variants of WT  and then  given as  inputs    to the data mining 

classifiers for characterization of the signals. Moreover, a comparative assessment of the PQ signal has been carried out 

with different classifiers such as Decision Tree (DT) and Random Forest (RF) have been implemented along with 

aforementioned detection techniques. The ensemble decision tree named RF has been used for the classification of large 

number of data set. Various single as well as combined power quality disturbance signals have been simulated in noisy 

and noise free environment in order to demonstrate the efficiency of the proposed techniques. Moreover, in order to 

represent in realistic environment, these techniques have been tested  with tree phase signals captured from transmission 

line panels. 

 

I. INTRODUCTION 

The Power Quality disturbance (PQD) study has become an important aspect in the area of power system, as  

these disturbances affect the overall harmony of the system. Ordinarily, an AC voltage waveform and AC current 

waveform are expected to be  sinusoidal at  the  system frequency. But  there  are  several factors,  namely the  use 

of solid state devices, equipment failure etc., which deviates deviates the  waveform from  being a  sinusoid [1].  

Due to these circumstances the quality of power deteriorates, which brings instability in the power system. The 

deviated waveforms could be a sag waveform,oscillatory transient waveform, waveform swell etc. Hence, in order 

to maintain a healthy and a stable system, it is important to maintain the voltage profile in terms of improvement    

of the quality of power. 

 
First of all, the detection and the localization of the various types of PQ disturbance are required before going for 

improvement of voltage profile. In order to identify the disturbances, the different techniques such as the Fourier 

transform (FT), the short-time Fourier transform (STFT), wavelet transform (WT), Neural Network, Fuzzy logic, S-

transform have been used [2], [3]. The FT gives the information about the frequency component only. On the other 

hand, the time frequency information related to the disturbance waveform can be obtained by implementing STFT 

[4]. However, STFT is fails to track the transient signals perfectly due to its fixed window property [5]. Similarly, 

the S-transform suffers from computational burden [6]. The wavelet transform affords  the time-scale  analysis of 

the non-stationary signal due to Multi-Resolution Analysis (MRA) property. The property of MRA represents the 

signals into different time-scales. The WT provides time-frequency information by the dilation and translation of  

the wavelet with the signal. 

In this paper, the variants of WT namely the maximum overlapping discrete Wavelet Transform (MODWT) [7], 

[8], [9] and the traditional DWT are implemented for the feature extraction of the PQ disturbances. The extracted 

features from the decomposition of WT are used for classification of the PQ signals. 

The accurate detection of the PQ disturbance is the important performance indices in power quality analysis. 

However, the most common automated classification models are based on the Artificial Neural Network (ANN)
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[10], fuzzy and neuro-fuzzy systems [11]. But the main disadvantage of  ANN based classifier is  the  requirement 

of retraining when a new phenomenon is added. Moreover, the Hidden Markov Model (HMMs) classifier is not 

suitable to classify the slow phenomena like interruption [12], [13]. Similarly the decision tree (DT) is a good 

classifier [14] but it suffers with over fitting problem when large number of classes are to be classified [15]. In this 

paper, Decision Tree (DT) [16], [17] and Random Forest (RF) have been implemented to discriminate the PQD 

signals in order to establish a comparative assessment of MODWT application in PQ environment. 

 
The Random forest (RF) is good candidate in the area of classification. However, the RF simultaneously 

classifies both the fast and slow phenomena. 

This paper organized as follows. The Section-II describes the theory of the MODWT along with the DWT. The 

feature extraction processes are presented in the Section-III. Section-IV provides the brief theory about the 

classifiers. Similarly, the Section-VI deals with the construction of PQ model as well as the effectiveness of 

MODWT and DWT in the detection as well as localization of the PQ disturbances. The classification results are 

presented in the Section-VII. Finally, Section-VIII provides the concluding remark. 

 

 
II. LOCALIZATION APPROACH 

The detection of the PQ disturbance has been carried out by implementing the variants of wavelet transform 

i.e DWT and the MODWT. These techiques are briefly described in this section while the feature extraction and 

classification are described in the subsequent sections. 

 

 
A. Continuous Wavelet Transform 

The wavelet transform represents the signal as a combination of the wavelets at different location and scales. The 

continuous wavelet transform generally implements for analysis of the continuous time signal. The surface of the 

wavelet coefficients is obtained from the different values of the scaling and the translation factors. Mathematically, 

for a signal x(t), the continuous wavelet transform [18] can expressed 
 

 
1 

CW T (a, b) = √
a

 

 
∞ 

x
(
t
)
g 

−
∞ 

.
 
t 

−

 

b
 
Σ

 
 

 

 

 
dt
 (1

) 

where g( ) is the mother wavelet. Similarly, a is the scale factor and b is the translation factor. Both a and b are 

varies in continuous manner. In order to eliminate the redundancy due to continuous coefficients, discrete Wavelet 

transform has been introduced which has been discussed in next subsequent subsection. 

 
B. Discrete Wavelet Transform 

The discrete wavelet transform (DWT) implements to decompose a discretized signal into different resolution 

levels. The DWT reduces the substantial redundancy of CWT. The multiresolution analysis (MRA) of the wavelet 

function generates the detail coefficients of the decomposed signal whereas the scaling function generates the 

approximation coefficients. The DWT can be expressed with g as the mother wavelet as 
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where k is an integer which stands for the sample reference. The scaling parameter and the translation parameter  

a and b vary in the discrete manner. The time signal S[n] decomposed in to detailed d1(n) and smoothed c1(n) 
version by employing high pass  (h(n))  and  low  pass  filters (l(n)) called  as  ‘Quadrature  mirror  filters’.  Thus 

the detail version contains high frequency components than the smooth version. c1(n). Mathematically, they are 

specified [19] as 
 
 

 

Fig. 1: Block diagram of DWT decomposition 

 

 

c1(n) = 
Σ 

h(k − 2n)c0(k)

 (3

) 

d1(n) = g(k − 2n)c0(k)

 (4) 

k 

where c0(n) is the discretised time signal (sampled version of S0(n)). The outputs of the two filters are down 

sampled by a factor of 2 in order to obtain the DWT coefficients. The output of the low pass filter is called the 

approximation coefficients and the output of the high pass filter is called as the detail coefficients. The 

approximation coefficients are further fed to the low pass and high pass filter in ordered to iterate the analysis 

process. The Quadrature mirror filters are related by the equation 

 
h[L − 1 − n] = (−1)nl(n)

 (5

) 

where, L is the filter length. The signal which is fed to both the low pass and high pass filter is shown in Fig.1. 

 
The implementation of DWT is restricted with the length of signals. Similarly, the coefficients are affected by the 

change of initial point. So modified DWT (MODWT) has been implemented in ordered to overcome the drawbacks 

of the DWT which is presented in the subsequent subsection. 

 

 
C. Maximum Overlapping Discrete Wavelet Transform (MODWT) 

The motivation to formulate the MODWT over the conventional DWT is the ability of the free selection of 

a starting point of a time series signal. The orthogonal transform of DWT suffers from the lack of the 

invariance translation in time series analysis. The Maximum Overlap Discrete Wavelet Transform is the 

enhanced version of the Discrete Wavelet Transform (DWT). This transform can be employed to any sample 

size whereas the DWT is limited to the signal length N to be an intermultiple of 2j where j = 1, 2, 3, . . . , J is 

the scale number [9]. The representation of MODWT is shown in Fig.2. The MODWT scaling filter hl and the 

wavelet filters gl are related to the DWT filters through (6) and (7) 
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The MODWT filters are also in the quadrature mirrors like DWT filter is given as (9) 

and (8) 
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where  ̃g0 is  periodized g̃  to  length  N  and also the h̃0 is  periodized h̃  to length  N . So the  original time  series 
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Fig. 2: Block diagram representation of MODWT decomposition 

 
 

where l = 0, 1, 2, . . . , L 1 and L is the width of the filter. 

The nth element of the first-stage wavelet and the scaling coefficients of MODWT with the input time series signal 

X(n) is as follows 

W̃1,n  = 

Ṽ1,n  = 

L1 −1 

hlXn−lmodN

 (10

) 
l=0 

L1 −1 

glXn−lmodN

 (11

) 
l=0 

where n = 1, 2, 3, . . . , N and N is the length of signal in sample. 
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Ã1,n  = 

D̃1,n  = 

glV1,n+lmodN

 (12

) 
l=0 

L1 −1 

glW1,n+lmodN

 (13

) 
l=0 

The first-stage approximations and details can be calculated by the equations (12) and (13). The MODWT 

scaling coefficients Vj and Wj wavelet coefficients at the nth element of the jth stage are given by the equations (14) 

and (15) 

Ṽj,n  = 

W̃j,n  = 

Lj −1 

gj,1Xn−lmodN

 (14

) 
l=0 Lj −1 

hj,1Xn−lmodN

 (15
) 

l=0 

Similarly, the approximations Aj and the details Dj of the nth  element of  the  jth  stage MODWT are given by  

the equations (16) and (17). 

Ãj,n  = 
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l l 

l=0 

 

signal can be stated in terms of the approximations and the details as follows 

j 

X(n) = Dj + Aj

 (18) 

l=0 

The original signal can be synthesized easily from the decomposed signals like the traditional DWT and FT 

techniques. The DWT and proposed MODWT has been implemented in the subsequent Section. 
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III. THEORY OF THE FEATURE EXTRACTION 

A. Feature extraction 

The detail and the approximation coefficients are not directly fed as input to the classifiers. So, the feature 

extraction is carried out with approximation and detail coefficients in order to reduce the dimensions of the input 

feature matrix. Four selected features such as the energy [20], the standard deviation [1], the entropy [21] and the 

CUSUM have been extracted from the detail coefficients and are given below [22] . 

N 
1 

Energy EDi = 
N

 

 

|

D

i

j 
j

=
1 
 

N 

|

 (19

) 

1 
 

2 

 

 

Standard 

deviation σi 

=
 

 
N

 

N 

(
D

i

j 
j

=
1 

−

 

µ

i

) 

 

(20) 

Entropy EN Ti = − 
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where M ean µi = 

1 
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CUSUM CMi = (Dij − µi)2

 (22) 
j=1 

 

Dij, i = 1, 2, 3, . . . , l (level of decomposition) and N is the number of 

samples 

in each decomposed signal. In [1], disturbance signals like sag, swell, sag with harmonic and swell with harmonic 

has been classified using the standard deviation curve, some other signals has to classify properly. So the extracted 

parameters have been further fed to the data mining based classification algorithm for proper characterisation of the 

signals. Moreover, features are normalised with the maximum value. The classification algorithms are discussed in 

the subsequent section. 

 
IV. CLASSIFICATION APPROACH 

The extracted features have been give as inputs to the classifier such as the DT and the RF. 

 
A. Decision Tree Classifier (DT) 

The DT is one of the machine learning techniques in which the design process is like a binary tree structure. DT  

is much faster than the ANN and SVM [23] and [24].  The optimum features extracted from the training  patterns  

are used to formulate the decision tree (DT) based classifier [25]. The construction of DT algorithm is presented 

below [16], [17], [26]. 

1) Start at a single root node. 

2) Split the data set (node) into two subsets (child node) with optimal criteria. 

3) If it reaches the stopping criteria, exit (called the leaf node). Otherwise, repeat step  2 to each child node to  

get leaf node. These leaf nodes contain the ‘decisions’ for classification. 

The splitting criteria uses the information gain, which is based on concept of disorderliness in terms of entropy. 

2 
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1) Limitation of the Decision Tree: 

1) DT is extremely sensitive to small perturbations in the data set considered for the analysis. 

2) When there are lot of un-correlated variables, the efficiency of the DT decreases. 

3) Some times DT suffers from over fitting in order  to  classify large  number of  classes simultaneously. 

Though widely used DT has become a good classifier than the neural network and the fuzzy logic, the 

ensemble 

DT is called as the RF has the capability to classify large number of classes simultaneously. The RF successfully 

overcomes the over fitting problem of the DT . 
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B. Random Forest (RF) 

Random forest is developed by Leo Breiman [27]. The ensemble decision tree, RF which fits many classification 

trees to a data set and then combines the prediction from all the correlated trees. Each tree in RF depends on the 

value of a separately sampled random vector. The instability of individual trees in DT is  resolved in RF as they  

gain relatively low bias when grown adequately. 

The basic block diagram of a RF, ensembled with n number of trees has been shown in Fig. 3. The basic 

construction of RF starts for kth tree of nth number of trees in the RF with the generation of a random vector ψk 
which is independent of past random vectors ψk . . . ψk−1 with the same distribution. A single tree has grown with 

the training set I and the set of attributes present in ψk, resulting in a classifier Ck (p, ψk) with an input vector p. 

Moreover in random split selection, ψ consists of a number of random integers ntry. Each tree in RF classification 
caste a vote for most popular class at input p. The algorithm of RF is carried out using the following steps. 

1) For k = 1 to ntree . 

a) Draw ntree bootstrap samples from the training set I. 

b) Grow an RF tree Ck (p, ψk) to the bootstrapped data, by recursively iterating the steps for each terminal 

node of the tree until there is no possibility of further split. (Unpruned tree of maximal depth) 

i) Select ntry variables from the features. 

ii) Pick the best variable/split point among the ntry. 

iii) Split the node into two daughter nodes. 

2) Output the ensemble of trees. {Ck (p, ψk) , k = 1, . . . , ntree} 

 

T1
    

T2 
    Root       

node 

 
 
 

Intermediate 

node 

 

 

 
Intermediate 

node 

 

 

 

 
Leaf node 

 

Fig.  3: Structure of RF 

 
V. POWER QUALITY DISTURBANCE MODEL 

The theory described in Section-II has been implemented in ordered to compute the approximation and detail 

coefficients up to fourth finer levels applying the DWT and MODWT. The PQD signals has been simulated with 

sampling frequency is 3.2 kHz [28]. The assigned class labels to PQ disturbances of synthesized signals has been 

given in Table I. 

VI. DECOMPOSITION OF PQ SIGNALS 

A. Pure Sinusoidal Voltage Signal 

A pure sinusoidal wave of voltage signal is considered in Fig.4. With DWT and MODWT, the signal is 

decomposed up to four decomposition levels are shown in Fig.4 along with the original sine wave. The the vertical 

axis represents the amplitude of voltage signal in volt V p.u. (per unit)  and similarly  the horizontal axis presents  

the time (in second) in terms of samples. Both DWT and MODWT are implemented on the aforementioned PQ 

signals in order to carry out the analysis. 

By decomposing normal voltage, similar types of waveforms are produced at the respective decomposition level 

both in DWT and the MODWT present in Fig. 4 along with  the original waveform. In  MODWT,  the  initial point 

is shifted due to circular shifting which helps in future prediction. The decomposition levels and the corresponding 

description of the pure sine wave with sag and swell are shown in Fig. 5 and Fig. 6 respectively. 

Tn 
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TABLE I: Class labels of synthesis signal 
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Fig. 4: Localization of pure sine wave in (a) DWT decomposition (b) MODWT decomposition 

 
 

B. Pure sine wave with sag 

Pure sine wave  with sag has been considered for analysis. In Fig. 5, sag detection can be observed at levels         

1, 2, 3 and 4. In DWT decomposition, the starting and the end point of the distortion of each decomposition level 

are at same alignment with the original signal, however in MODWT decomposition the first decomposed level is    

at the alignment with the original signal but the others are shifted due to the circular shifting. 

From the Fig. 5, it is observed that, both the DWT and the MODWT decomposition provided similar type of 

waveforms along with the shifting. 

 
C. Pure sine wave with  swell 
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The procedure adopted for this type of signal is the same as the previous case. In Fig. 6, similar types of 

waveforms have been found in the same decomposition levels. 

 
Similarly, the rest PQ disturbances are subjected to the process of decomposition using the DWT and the 

MODWT. Similar types of waveforms has been also obtained from both the types of the wavelet transforms. 

 
In decomposition levels other than the 1st, the initial point of the signal is also sifted along with the distortions. 

So, MODWT can be implemented to predict the occurrence of power quality distortions. 
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Fig. 5: Localization of sine wave with sag in (a) DWT decomposition (b) MODWT decomposition 

 

1 
0 

−1 

0 0.05 0.1 0.15 0.2 
0.02 

0 
−0.02 

1 
0 

−1 
0 0.05 0.1 0.15 0.2 

0.02 
0 
−0.02 

 

0.05 
0 

−0.05 

0.1 
0 

−0.1 

 
0.5 

0 
−0.5 

50 100 150 200 250 300 

 
20    40    60    80    100   

120   140  160 

 

10    20    30    40    50    

60    70    80 
 

 

5
     
1
0
     
1
5
     
2
0
     
2
5

     30     35  40 
Samples 

(a) 

100 200 300 400 500 600 

A
m

p
l
i
t
u

d
e
 
(
i
n

 
V

)
 

A
m

p
l
i
t
u

d
e
 
(
i
n

 
V

)
 

http://www.ijcrt.org/


5

0
8 

www.ijcrt.org                                                © 2018 IJCRT | Volume 6, Issue 2 April 2018 | ISSN: 2320-2882 
 

IJCRT1807174 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 508 
 

0.02 
0 

−0.02 
 

0.02 
0 

−0.02 

 
0.1 

0 
−0.1 

100   200   300   400   
500   600 

 
100   200   300   400   

500   600 

 

 
100   200   300   400   

500   600 

 
100   200   300   400   

500   600 
Samples 

(b) 
 

Fig. 6: Localization of sine wave with swell in (a) DWT decomposition (b) MODWT decomposition 

 
 

D. Harmonic voltage signal 

Consider the harmonic signal shown in Fig. 7. By observing 1st  two levels of Fig. 4 and Fig. 7, it can be  

observed that for sinusoidal signal the magnitude of 1st two levels are  almost zero  and for  harmonic signal, 1st  
two levels have some magnitude. Hence, it can be concluded that the waveforms of each level are different for 

different disturbance and this property helps in classification of those disturbances. Similar to that of other cases,  

the origin point of signals are shifted along with the distortion in the decomposition levels of MODWT. 
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Fig. 7: Sine wave with Harmonic (a) DWT decomposition (b) MODWT decomposition TABLE II: 

CA % of Pure Signals 

 

 DWT 

%(C

A) 

MODWT 

%(CA) 

DWT 

%(C

A) 

MODW

T%(CA

) 

CL1 100 99.52 97.11 99.95 

CL2 99.91 100 99.97 100 

CL3 100 100 100 100 

CL4 99.95 100 97.34 100 

CL5 98.98 100 99.75 100 

CL6 99.78 100 99.94 100 

CL7 99.91 100 95.96 100 

CL8 99.81 100 99.94 100 

CL9 100 99.23 100 100 

CL1
0 

98.27 100 98.94 100 

Tot

al % 

CA 

98.62 99.16 99.21 99.98 

 

VII. RESULT OF THE CLASSIFICATION 

The classification accuracy is computed by the automated classifiers described in Section-III. In this paper, total 

31020 numbers of signals are simulated for the ten classes of disturbances and each of the signals are fed for 
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decomposition up to seventh finer levels. So, each data set contains variable X (X1 standard deviation, X2 

energy of details, X3 entropy,X4 CUSUM) and L(L1, L2, . . . , L7 level of decomposition) which constitute 

28 features. For each data set, 70% of the total data has been treated as the training data to build a training model 

and the rest 30% of data are apply for testing. 

The pure PQD signal waveforms are added with the white Gaussian noise in order to realize the disturbances in 

the noisy environments. The data set with signal to noise ratio (SNR) of 20 dB. The Table II provides the calculated 

values of the %CA of all the ten classes using the two wavelet transform combined with the two classifiers in the 

noise free envirnment. The last row in the Table  II is the average %CA of all the ten classes. Similar procedure    

has been realized for obtaining the classification accuracy of PQD signals (Table III). 

 
Table II and Table III, have provided the classification accuracy of the PQD signals with the noisy and without 

noise environment. From the above Tables, it is observed that the RF classifier has better classification accuracy 

value than the DT. 
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Class 
DT RF 

Class 
DT RF 

 

TABLE III: CA % of Signals with 20 dB noise 
 
 

 DWT 
%(C
A) 

MODWT 
%(CA) 

DWT 
%(C
A) 

MODW
T%(CA

) 

CL1 98.05 98.13 98.06 98.65 

CL2 97.03 98.11 98.60 98.71 

CL3 100 99.97 100 100 

CL4 99.93 100 100 100 

CL5 100 99.92 100 100 

CL6 99.53 100 100 100 

CL7 100 99.95 100 100 

CL8 99.86 99.96 100 100 

CL9 94.21 100 100 99.97 

CL1
0 

97.82 100 98.30 100 

Tot
al % 
CA 

97.53 98.87 98.91 99.26 

 

TABLE IV: CA % of three phase real time signal 
 
 

 DWT 
%(C
A) 

MODWT 
%(CA) 

DWT 
%(C
A) 

MODW
T%(CA

) 

CL1 97.80 97.82 98.14 99.40 

CL2 98.15 98.90 99.91 100 

CL3 99.74 100 100 100 

CL4 97.35 97.02 99.03 99.10 

CL1
+C
L2 

99.91 99.79 99.49 99.67 

CL6 100 99.32 99.34 100 

CL7 96.11 97.36 98.52 99.01 

CL8 97.02 97.28 99.58 99.46 

Tot
al % 
CA 

97.28 98.97 99.02 99.23 

 
 

A. Classification with Real PQD signals 

Eight different types of three phase PQD signals have been captured from an overhead power transmission line 

panel of length 360 km. The transmission demo panel comprises a line model of voltage of 380 kV. The equivalent 

circuit of the line  is π  model with  concentrated parameters. The demo panel comprises of natural load 600 MW.  

A 380 V has been applied to transmission line panel and by changing the load and creating fault, the various 

disturbances are created like the single phase. These disturbances are then stored in a storage oscilloscope and fed  

to the MATLAB.  The details of the experimental set up is given in Fig 8. These three phase signals have been fed  

to the aforementioned classifiers same as the previous cases. 
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Fig. 8: Experimental setup for three phase voltage signal generation 
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(a) 
 

(b) 
 

(c) 

 

Fig. 9: Three phase real distorted voltage signals (a) Sag (b) Swell (c) Sag and harmonics 

 
 

The classification of three phase PQ disturbances have been presented in Table IV. From Table IV, it can be 

observed that the aforementioned methods are working satisfactorily for the classification of real data. The RF 

classifier has provided good results compared to  all other classifiers. Moreover %CA of MODWT  based data set  

is very close to the DWT based data set just like that of the synthesized signal. 

 
VIII. CONCLUSION 

The useful features of the PQD signals have been extracted using the detail coefficients of the DWT and the 

MODWT decomposition. The classification accuracy of these simulated and the real signals have been obtained    

by MODWT as well as DWT with the combination of automatic classifiers such as DT and RF. From these 

aforementioned classifiers, it is observed that DWT has yielded similar classification accuracy like the MODWT. 

The down sampling free MODWT provides the proper localization of PQ disturbances along with the shifting. 

Elimination of down sampling overcomes the restriction in the choice of signal length. The insensitivity to the 

choice of starting point of time series has made MODWT as a suitable technique in real time environment. The 

ensemble decision has better classification rate than the single tree. However, RF classifies large data set 

satisfactorily where the DT fails due to over fitting. DT is extremely sensitive to small perturbations in the data set 

considered    for analysis. Moreover, the RF also perform satisfactorily on real time environment. 
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